Jose Angel Islas

Department of Mathematics University of North Texas Ph.D. advisor: Pieter Allaart

AMS Central Sectional Meeting Texas Tech University Lubbock, Tx April 13, 2014

- Optimal Stopping problems
- Stopping near the top of a random walk
 - History/Conjectures
 - New results

.⊒ . ►

A stopping time with respect to a sequence of random variables $X_1, X_2, ...$ is a random variable τ with values in (1,2,...) and the property that for each t in (1,2,...), the occurrence or non-occurrence of the event $\tau = t$ depends only on the values of $X_1, X_2, ..., X_t$.

The stopping rule problems are defined by two objects:

• (i) a sequence of random variables, $X_1, X_2, ...,$ whose joint distribution is assumed known

The stopping rule problems are defined by two objects:

- (i) a sequence of random variables, *X*₁, *X*₂, ..., whose joint distribution is assumed known
- (ii) a sequence of real-valued reward functions, $y_0, y_1(x_1), y_2(x_1, x_2), ..., y_{\infty}(x_1, x_2, ...)$

The stopping rule problems are defined by two objects:

- (i) a sequence of random variables, *X*₁, *X*₂, ..., whose joint distribution is assumed known
- (ii) a sequence of real-valued reward functions, $y_0, y_1(x_1), y_2(x_1, x_2), ..., y_{\infty}(x_1, x_2, ...)$
- (iii) From (i) and (ii), if we stop at time k and if $X_1 = x_1, X_2 = x_2, ..., X_k = x_k$, then we receive the reward $Y_k = y_k(x_1, x_2, ..., x_k)$

The stopping rule problems are defined by two objects:

- (i) a sequence of random variables, *X*₁, *X*₂, ..., whose joint distribution is assumed known
- (ii) a sequence of real-valued reward functions, $y_0, y_1(x_1), y_2(x_1, x_2), ..., y_{\infty}(x_1, x_2, ...)$
- (iii) From (i) and (ii), if we stop at time k and if $X_1 = x_1, X_2 = x_2, ..., X_k = x_k$, then we receive the reward $Y_k = y_k(x_1, x_2, ..., x_k)$

When to stop or continue observing variables to maximize the expected payoff or to minimize the expected cost?, That is $E[Y_{\tau}]$

伺 ト く ヨ ト く ヨ ト

Finite Horizon

Stopping is required after observing $X_1, X_2, ..., X_N$

Backward Induction

We will use backward induction to solve this type of problems.

• (i) Let $X_1, X_2, ..., X_N$ be independent Bernoulli random variables with parameter p, that is

$$X_i = \begin{cases} 1, & \text{with probability p} \\ -1, & \text{with probability 1-p.} \end{cases}$$

• (i) Let $X_1, X_2, ..., X_N$ be independent Bernoulli random variables with parameter p, that is

$$X_i = \begin{cases} 1, & \text{with probability p} \\ -1, & \text{with probability 1-p}. \end{cases}$$

• (ii) Consider $S_0 := 0$, $S_n := X_1 + X_2 + \ldots + X_n$ for $n \le N$ and

• (i) Let $X_1, X_2, ..., X_N$ be independent Bernoulli random variables with parameter p, that is

$$X_i = \begin{cases} 1, & \text{with probability p} \\ -1, & \text{with probability 1-p} \end{cases}$$

• (ii) Consider $S_0 := 0$, $S_n := X_1 + X_2 + \ldots + X_n$ for $n \le N$ and

• (iii)
$$M_N := \max(S_0, S_1, ..., S_N)$$

• (i) Let $X_1, X_2, ..., X_N$ be independent Bernoulli random variables with parameter p, that is

$$X_i = \begin{cases} 1, & \text{with probability p} \\ -1, & \text{with probability 1-p} \end{cases}$$

• (ii) Consider $S_0 := 0$, $S_n := X_1 + X_2 + \ldots + X_n$ for $n \le N$ and

• (iii)
$$M_N := \max(S_0, S_1, ..., S_N)$$

Suppose we wish to maximize the probability of "stopping at the top" of the random walk, that is, $P(S_{\tau} = M_N)$. What is the optimal τ ?

Suppose we wish to maximize the probability of "stopping at the top" of the random walk, that is, $P(S_{\tau} = M_N)$. What is the optimal τ ?

Recently answered by Yam et al. (2009) but for the case $p = \frac{1}{2}$ it was implicit in the work of Hlynka and Sheahan (1988).

Suppose we wish to maximize the probability of "stopping at the top" of the random walk, that is, $P(S_{\tau} = M_N)$. What is the optimal τ ?

Recently answered by Yam et al. (2009) but for the case $p = \frac{1}{2}$ it was implicit in the work of Hlynka and Sheahan (1988).

If $p > \frac{1}{2}$, $\tau = N$ is the unique optimal rule

Suppose we wish to maximize the probability of "stopping at the top" of the random walk, that is, $P(S_{\tau} = M_N)$. What is the optimal τ ?

Recently answered by Yam et al. (2009) but for the case $p = \frac{1}{2}$ it was implicit in the work of Hlynka and Sheahan (1988).

1 If
$$p>rac{1}{2}$$
, $au=N$ is the unique optimal rule

2) If
$$p < \frac{1}{2}$$
, $\tau = 0$ is the unique optimal rule

Suppose we wish to maximize the probability of "stopping at the top" of the random walk, that is, $P(S_{\tau} = M_N)$. What is the optimal τ ?

Recently answered by Yam et al. (2009) but for the case $p = \frac{1}{2}$ it was implicit in the work of Hlynka and Sheahan (1988).

- If $p > \frac{1}{2}$, $\tau = N$ is the unique optimal rule
- 2 If $p < \frac{1}{2}$, $\tau = 0$ is the unique optimal rule
- (a) If $p = \frac{1}{2}$, any rule τ such that $P(S_{\tau} = M_{\tau} \text{ or } \tau = N) = 1$ is optimal

通 と イ ヨ と イ ヨ と

Problem

Given N>0, find a stopping time $\tau\leq N$ so as to maximize

$$P(M_N - S_\tau \le 1).$$

(Win if we stop at one of the two highest values)

- ₹ 🖹 🕨

Say we are in state (n, i) if:

- **①** There are n steps remaining until the time horizon N;
- **②** The walk is currently *i* units below its running maximum.

Say we are in state (n, i) if:

- There are n steps remaining until the time horizon N;
- **2** The walk is currently *i* units below its running maximum.

Obviously, it is optimal to continue in states (n,2), $(n,3),\ldots$

Say we are in state (n, i) if:

- **①** There are n steps remaining until the time horizon N;
- **②** The walk is currently *i* units below its running maximum.

Obviously, it is optimal to continue in states (n,2), $(n,3),\ldots$

Lemma (Allaart)

In state (n,0) with $n \ge 1$, it is also optimal to continue.

Not very difficult – stopping after the next step (whether it is up or down) is at least as good as stopping now.

Say we are in state (n, i) if:

- **①** There are n steps remaining until the time horizon N;
- **②** The walk is currently *i* units below its running maximum.

Obviously, it is optimal to continue in states (n,2), $(n,3),\ldots$

Lemma (Allaart)

In state (n,0) with $n \ge 1$, it is also optimal to continue.

Not very difficult – stopping after the next step (whether it is up or down) is at least as good as stopping now.

Conclusion

The critical states are (n, 1), for $n = 1, 2, \ldots$

Lemma (Allaart)

For each $n \ge 1$, there exists $0 < p_n \le 1$ such that, in state (n, 1), it is optimal to

- stop if $p \leq p_n$;
- continue if $p \ge p_n$.

A B + A B +

э

Lemma (Allaart)

For each $n \ge 1$, there exists $0 < p_n \le 1$ such that, in state (n, 1), it is optimal to

- stop if $p \leq p_n$;
- continue if $p \ge p_n$.

Remark

The p_n can be calculated by backward induction.

Table: Cri	tical V	/alues p_n
------------	---------	--------------

n	p_n	n	p_n
1	1	11	.48452
2	0.5	12	.47984
3	0.5	13	.48543
4	.46898	14	.48175
5	.48288	15	.48624
6	.47144	16	.48330
7	.48268	17	.48697
8	.47470	18	.48453
9	.48357	19	.48760
10	.47752	20	.48554

・ロト ・日・・日・・日・・ つくの

Graph and conjectures

Graph and conjectures

The graph suggests:

 $\textcircled{0} \ p_n < 0.5 \text{ for all } n \geq 4$

$$lim_{n\to\infty} p_n = 0.5$$

3)
$$p_{2n-2} < p_{2n} < p_{2n-1} < p_{2n+1}$$
, for all $n \geq 4$,

A∄ ▶ ∢ ∃=

Graph and conjectures

The graph suggests:

 $\textcircled{0} \ p_n < 0.5 \text{ for all } n \geq 4$

$$lim_{n\to\infty} p_n = 0.5$$

3)
$$p_{2n-2} < p_{2n} < p_{2n-1} < p_{2n+1}$$
, for all $n \geq 4$,

A∄ ▶ ∢ ∃=

- 2 $\limsup_{n \to \infty} p_n = 0.5$

- ₹ 🖹 🕨

- $lim \sup_{n \to \infty} p_n = 0.5$
- $\ \, {\it opt} \ \, p_{2n} < p_{2n-1} < p_{2n+1} \ \, {\it for \ all} \ \, n \geq 4,$

伺 ト く ヨ ト く ヨ ト

- $lim \sup_{n \to \infty} p_n = 0.5$
- **3** $p_{2n} < p_{2n-1} < p_{2n+1}$ for all $n \ge 4$,

Conjectures about p_n (Allaart)

i)
$$\lim_{n\to\infty} p_n = 0.5$$
.
ii) $p_{2n} \le p_{2n+2}$ for all $n \ge 2$.

伺 ト く ヨ ト く ヨ ト

Jose Angel Islas Stopping near the top of a random walk

э

∃►

- **→** → **→**

 $\ \, {\bf 0} \ \, p_n \geq p_4 \ \, {\rm for} \ \, n \geq 1$

2
$$p_{2n+4} \le p_{2n+1}$$
 for all $n \ge 0$.

э

∃ >

/⊒ ► < ∃ ►

$$p_n \ge p_4 \text{ for } n \ge 1$$

2)
$$p_{2n+4} \le p_{2n+1}$$
 for all $n \ge 0$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

æ

$$p_n \ge p_4 \text{ for } n \ge 1$$

イロト イ団ト イヨト イヨト

1
$$p_n \ge p_4$$
 for $n \ge 1$
2 $p_{2n+4} \le p_{2n+1}$ for all $n \ge 0$.

イロト イ団ト イヨト イヨト

$$p_n \ge p_4 \text{ for } n \ge 1$$
 $p_{2n+4} \le p_{2n+1} \text{ for all } n \ge 0.$
 $p_{2n+6} \le p_{2n+1} \text{ for all } n \ge 3.$

<ロ> (日) (日) (日) (日) (日)

$$p_n \ge p_4 \text{ for } n \ge 1$$
 $p_{2n+4} \le p_{2n+1} \text{ for all } n \ge 0.$
 $p_{2n+6} \le p_{2n+1} \text{ for all } n \ge 3.$

<ロ> (日) (日) (日) (日) (日)

Allaart, P. C. (2010).

How to stop near the top in a random walk?. Decision Making Processes under Uncertainty and Ambiguity, RIMS Kokyuroku 1682, 33-40.

- HLYNKA, M. and SHEAHAN, J. N. (1988). The secretary problem for a random walk. Stoch. Proc. Appl. 28, 317–325.

YAM, S. C. P., YUNG, S. P. and ZHOU, W. (2009). Two rationales behind 'buy-and-hold or sell-at-once'. J. Appl. Probab. 46, 651-668.