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Stopping time

Definition

A stopping time with respect to a sequence of random variables
X1, X2, ... is a random variable τ with values in (1,2,...) and the
property that for each t in (1,2,...), the occurrence or
non-occurrence of the event τ = t depends only on the values of
X1, X2, ..., Xt.
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Optimal Stopping problems

Definition (Stopping rule problems)

The stopping rule problems are defined by two objects:

(i) a sequence of random variables, X1, X2, ...,whose joint
distribution is assumed known

(ii) a sequence of real-valued reward functions,
y0, y1(x1), y2(x1, x2), ..., y∞(x1, x2, ...)

(iii) From (i) and (ii), if we stop at time k and if
X1 = x1, X2 = x2, ..., Xk = xk, then we receive the reward
Yk = yk(x1, x2, ..., xk)

When to stop or continue observing variables to maximize the
expected payoff or to minimize the expected cost?, That is E[Yτ ]
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Finite Horizon Problems

Finite Horizon

Stopping is required after observing X1, X2, ..., XN

Backward Induction

We will use backward induction to solve this type of problems.
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Stopping near the top of a random walk

Stopping near the top of a random walk

(i) Let X1, X2, ..., XN be independent Bernoulli random
variables with parameter p, that is

Xi =

{
1, with probability p

−1, with probability 1-p.

(ii) Consider S0 := 0, Sn := X1 +X2 + ...+Xn for n ≤ N
and

(iii) MN := max(S0, S1, ...SN )
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History

Stopping at the top of a random walk

Suppose we wish to maximize the probability of ”stopping at the
top” of the random walk, that is, P (Sτ =MN ). What is the
optimal τ?

Recently answered by Yam et al. (2009) but for the case p = 1
2 it

was implicit in the work of Hlynka and Sheahan (1988).

1 If p > 1
2 , τ = N is the unique optimal rule

2 If p < 1
2 , τ = 0 is the unique optimal rule

3 If p = 1
2 , any rule τ such that P (Sτ =Mτ or τ = N) = 1 is

optimal
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Stopping near the top of a random walk

Problem

Given N > 0, find a stopping time τ ≤ N so as to maximize

P (MN − Sτ ≤ 1).

(Win if we stop at one of the two highest values)
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Exploration

Definition

Say we are in state (n, i) if:

1 There are n steps remaining until the time horizon N ;

2 The walk is currently i units below its running maximum.

Obviously, it is optimal to continue in states (n, 2), (n, 3), . . .

Lemma (Allaart)

In state (n, 0) with n ≥ 1, it is also optimal to continue.

Not very difficult – stopping after the next step (whether it is up or
down) is at least as good as stopping now.

Conclusion

The critical states are (n, 1), for n = 1, 2, . . . .
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Exploration

Lemma (Allaart)

For each n ≥ 1, there exists 0 < pn ≤ 1 such that, in state (n, 1),
it is optimal to

stop if p ≤ pn;

continue if p ≥ pn.

Remark

The pn can be calculated by backward induction.
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Table: Critical Values pn

n pn n pn

1 1 11 .48452
2 0.5 12 .47984
3 0.5 13 .48543
4 .46898 14 .48175
5 .48288 15 .48624

6 .47144 16 .48330
7 .48268 17 .48697
8 .47470 18 .48453
9 .48357 19 .48760

10 .47752 20 .48554

Jose Angel Islas Stopping near the top of a random walk



Graph and conjectures

Graph of the critical probabilities
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The graph suggests:

1 pn < 0.5 for all n ≥ 4

2 limn→∞ pn = 0.5

3 p2n−2 < p2n < p2n−1 < p2n+1, for all n ≥ 4,
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History: Properties of the sequence

Theorem (Allaart)

1 pn < 0.5 for all n ≥ 4

2 lim sup n→∞ pn = 0.5

3 p2n < p2n−1 < p2n+1 for all n ≥ 4,

Conjectures about pn (Allaart)

i) limn→∞ pn = 0.5.
ii) p2n ≤ p2n+2 for all n ≥ 2.
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New results

Theorem (J.A.I.)

1 pn ≥ p4 for n ≥ 1

2 p2n+4 ≤ p2n+1 for all n ≥ 0.

3 p2n+6 ≤ p2n+1 for all n ≥ 3.
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