Stopping near the top of a random walk

Jose Angel Islas

Department of Mathematics
University of North Texas
Ph.D. advisor: Pieter Allaart

AMS Central Sectional Meeting
Texas Tech University
Lubbock, Tx
April 13, 2014

- Optimal Stopping problems
(2) Stopping near the top of a random walk
- History/Conjectures
- New results

Stopping time

Definition

A stopping time with respect to a sequence of random variables X_{1}, X_{2}, \ldots is a random variable τ with values in $(1,2, \ldots)$ and the property that for each t in $(1,2, \ldots)$, the occurrence or non-occurrence of the event $\tau=t$ depends only on the values of $X_{1}, X_{2}, \ldots, X_{t}$.

Optimal Stopping problems

Definition (Stopping rule problems)
The stopping rule problems are defined by two objects:

- (i) a sequence of random variables, X_{1}, X_{2}, \ldots, whose joint distribution is assumed known

Optimal Stopping problems

Definition (Stopping rule problems)

The stopping rule problems are defined by two objects:

- (i) a sequence of random variables, X_{1}, X_{2}, \ldots, whose joint distribution is assumed known
- (ii) a sequence of real-valued reward functions, $y_{0}, y_{1}\left(x_{1}\right), y_{2}\left(x_{1}, x_{2}\right), \ldots, y_{\infty}\left(x_{1}, x_{2}, \ldots\right)$

Optimal Stopping problems

Definition (Stopping rule problems)

The stopping rule problems are defined by two objects:

- (i) a sequence of random variables, X_{1}, X_{2}, \ldots, whose joint distribution is assumed known
- (ii) a sequence of real-valued reward functions, $y_{0}, y_{1}\left(x_{1}\right), y_{2}\left(x_{1}, x_{2}\right), \ldots, y_{\infty}\left(x_{1}, x_{2}, \ldots\right)$
- (iii) From (i) and (ii), if we stop at time k and if $X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{k}=x_{k}$, then we receive the reward $Y_{k}=y_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)$

Optimal Stopping problems

Definition (Stopping rule problems)

The stopping rule problems are defined by two objects:

- (i) a sequence of random variables, X_{1}, X_{2}, \ldots, whose joint distribution is assumed known
- (ii) a sequence of real-valued reward functions, $y_{0}, y_{1}\left(x_{1}\right), y_{2}\left(x_{1}, x_{2}\right), \ldots, y_{\infty}\left(x_{1}, x_{2}, \ldots\right)$
- (iii) From (i) and (ii), if we stop at time k and if $X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{k}=x_{k}$, then we receive the reward $Y_{k}=y_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)$

When to stop or continue observing variables to maximize the expected payoff or to minimize the expected cost?, That is $E\left[Y_{\tau}\right]$

Finite Horizon Problems

Finite Horizon

Stopping is required after observing $X_{1}, X_{2}, \ldots, X_{N}$

Backward Induction

We will use backward induction to solve this type of problems.

Stopping near the top of a random walk

Stopping near the top of a random walk

- (i) Let $X_{1}, X_{2}, \ldots, X_{N}$ be independent Bernoulli random variables with parameter p , that is

$$
X_{i}= \begin{cases}1, & \text { with probability } \mathrm{p} \\ -1, & \text { with probability } 1-\mathrm{p}\end{cases}
$$

Stopping near the top of a random walk

Stopping near the top of a random walk

- (i) Let $X_{1}, X_{2}, \ldots, X_{N}$ be independent Bernoulli random variables with parameter p , that is

$$
X_{i}= \begin{cases}1, & \text { with probability } \mathrm{p} \\ -1, & \text { with probability 1-p }\end{cases}
$$

- (ii) Consider $S_{0}:=0, S_{n}:=X_{1}+X_{2}+\ldots+X_{n}$ for $n \leq N$ and

Stopping near the top of a random walk

Stopping near the top of a random walk

- (i) Let $X_{1}, X_{2}, \ldots, X_{N}$ be independent Bernoulli random variables with parameter p, that is

$$
X_{i}= \begin{cases}1, & \text { with probability } \mathrm{p} \\ -1, & \text { with probability 1-p }\end{cases}
$$

- (ii) Consider $S_{0}:=0, S_{n}:=X_{1}+X_{2}+\ldots+X_{n}$ for $n \leq N$ and
- (iii) $M_{N}:=\max \left(S_{0}, S_{1}, \ldots S_{N}\right)$

Stopping near the top of a random walk

Stopping near the top of a random walk

- (i) Let $X_{1}, X_{2}, \ldots, X_{N}$ be independent Bernoulli random variables with parameter p, that is

$$
X_{i}= \begin{cases}1, & \text { with probability } \mathrm{p} \\ -1, & \text { with probability 1-p }\end{cases}
$$

- (ii) Consider $S_{0}:=0, S_{n}:=X_{1}+X_{2}+\ldots+X_{n}$ for $n \leq N$ and
- (iii) $M_{N}:=\max \left(S_{0}, S_{1}, \ldots S_{N}\right)$

History

Stopping at the top of a random walk

Suppose we wish to maximize the probability of "stopping at the top" of the random walk, that is, $P\left(S_{\tau}=M_{N}\right)$. What is the optimal τ ?

Stopping at the top of a random walk

Suppose we wish to maximize the probability of "stopping at the top" of the random walk, that is, $P\left(S_{\tau}=M_{N}\right)$. What is the optimal τ ?

Recently answered by Yam et al. (2009) but for the case $p=\frac{1}{2}$ it was implicit in the work of Hlynka and Sheahan (1988).

Stopping at the top of a random walk

Suppose we wish to maximize the probability of "stopping at the top" of the random walk, that is, $P\left(S_{\tau}=M_{N}\right)$. What is the optimal τ ?

Recently answered by Yam et al. (2009) but for the case $p=\frac{1}{2}$ it was implicit in the work of Hlynka and Sheahan (1988).
(1) If $p>\frac{1}{2}, \tau=N$ is the unique optimal rule

Stopping at the top of a random walk

Suppose we wish to maximize the probability of "stopping at the top" of the random walk, that is, $P\left(S_{\tau}=M_{N}\right)$. What is the optimal τ ?

Recently answered by Yam et al. (2009) but for the case $p=\frac{1}{2}$ it was implicit in the work of Hlynka and Sheahan (1988).
(1) If $p>\frac{1}{2}, \tau=N$ is the unique optimal rule
(2) If $p<\frac{1}{2}, \tau=0$ is the unique optimal rule

History

Stopping at the top of a random walk

Suppose we wish to maximize the probability of "stopping at the top" of the random walk, that is, $P\left(S_{\tau}=M_{N}\right)$. What is the optimal τ ?

Recently answered by Yam et al. (2009) but for the case $p=\frac{1}{2}$ it was implicit in the work of Hlynka and Sheahan (1988).
(1) If $p>\frac{1}{2}, \tau=N$ is the unique optimal rule
(2) If $p<\frac{1}{2}, \tau=0$ is the unique optimal rule
(3) If $p=\frac{1}{2}$, any rule τ such that $P\left(S_{\tau}=M_{\tau}\right.$ or $\left.\tau=N\right)=1$ is optimal

Stopping near the top of a random walk

Problem

Given $N>0$, find a stopping time $\tau \leq N$ so as to maximize

$$
P\left(M_{N}-S_{\tau} \leq 1\right)
$$

(Win if we stop at one of the two highest values)

Exploration

Definition

Say we are in state (n, i) if:
(1) There are n steps remaining until the time horizon N;
(2) The walk is currently i units below its running maximum.

Exploration

Definition

Say we are in state (n, i) if:
(1) There are n steps remaining until the time horizon N;
(2) The walk is currently i units below its running maximum.

Obviously, it is optimal to continue in states $(n, 2),(n, 3), \ldots$

Exploration

Definition

Say we are in state (n, i) if:
(1) There are n steps remaining until the time horizon N;
(2) The walk is currently i units below its running maximum.

Obviously, it is optimal to continue in states $(n, 2),(n, 3), \ldots$

Lemma (Allaart)

In state $(n, 0)$ with $n \geq 1$, it is also optimal to continue.
Not very difficult - stopping after the next step (whether it is up or down) is at least as good as stopping now.

Exploration

Definition

Say we are in state (n, i) if:
(1) There are n steps remaining until the time horizon N;
(2) The walk is currently i units below its running maximum.

Obviously, it is optimal to continue in states $(n, 2),(n, 3), \ldots$

Lemma (Allaart)

In state $(n, 0)$ with $n \geq 1$, it is also optimal to continue.
Not very difficult - stopping after the next step (whether it is up or down) is at least as good as stopping now.

Conclusion

The critical states are $(n, 1)$, for $n=1,2, \ldots$.

Exploration

Lemma (Allaart)

For each $n \geq 1$, there exists $0<p_{n} \leq 1$ such that, in state $(n, 1)$, it is optimal to

- stop if $p \leq p_{n}$;
- continue if $p \geq p_{n}$.

Exploration

Lemma (Allaart)

For each $n \geq 1$, there exists $0<p_{n} \leq 1$ such that, in state $(n, 1)$, it is optimal to

- stop if $p \leq p_{n}$;
- continue if $p \geq p_{n}$.

Remark

The p_{n} can be calculated by backward induction.

Table: Critical Values p_{n}

n	p_{n}	n	p_{n}
1	1	11	.48452
2	0.5	12	.47984
3	0.5	13	.48543
4	.46898	14	.48175
5	.48288	15	.48624
6	.47144	16	.48330
7	.48268	17	.48697
8	.47470	18	.48453
9	.48357	19	.48760
10	.47752	20	.48554

Graph and conjectures

Graph of the critical probabilities

Graph and conjectures

Graph of the critical probabilities

The graph suggests:

(1) $p_{n}<0.5$ for all $n \geq 4$
(2) $\lim _{n \rightarrow \infty} p_{n}=0.5$
(3) $p_{2 n-2}<p_{2 n}<p_{2 n-1}<p_{2 n+1}$, for all $n \geq 4$,

Graph and conjectures

Graph of the critical probabilities

The graph suggests:

(1) $p_{n}<0.5$ for all $n \geq 4$
(2) $\lim _{n \rightarrow \infty} p_{n}=0.5$
(3) $p_{2 n-2}<p_{2 n}<p_{2 n-1}<p_{2 n+1}$, for all $n \geq 4$,

History: Properties of the sequence

Theorem (Allaart)
(1) $p_{n}<0.5$ for all $n \geq 4$

History: Properties of the sequence

Theorem (Allaart)
(1) $p_{n}<0.5$ for all $n \geq 4$
(2) $\limsup _{n \rightarrow \infty} p_{n}=0.5$

History: Properties of the sequence

Theorem (Allaart)
(1) $p_{n}<0.5$ for all $n \geq 4$
(2) $\limsup { }_{n \rightarrow \infty} p_{n}=0.5$
(3) $p_{2 n}<p_{2 n-1}<p_{2 n+1}$ for all $n \geq 4$,

History: Properties of the sequence

Theorem (Allaart)
(1) $p_{n}<0.5$ for all $n \geq 4$
(2) $\limsup \operatorname{sun}_{n \rightarrow \infty} p_{n}=0.5$
(3) $p_{2 n}<p_{2 n-1}<p_{2 n+1}$ for all $n \geq 4$,

Conjectures about p_{n} (Allaart)
i) $\lim _{n \rightarrow \infty} p_{n}=0.5$.
ii) $p_{2 n} \leq p_{2 n+2}$ for all $n \geq 2$.

New results

Theorem (J.A.I.)
(1) $p_{n} \geq p_{4}$ for $n \geq 1$

Theorem (J.A.I.)
(1) $p_{n} \geq p_{4}$ for $n \geq 1$
(2) $p_{2 n+4} \leq p_{2 n+1}$ for all $n \geq 0$.
(1) $p_{n} \geq p_{4}$ for $n \geq 1$
(2) $p_{2 n+4} \leq p_{2 n+1}$ for all $n \geq 0$.
(3) $p_{2 n+6} \leq p_{2 n+1}$ for all $n \geq 3$.

Graph

Graph of the critical probabilities

Theorem (J.I.)

(1) $p_{n} \geq p_{4}$ for $n \geq 1$

Graph

Graph of the critical probabilities

Theorem (J.I.)

(1) $p_{n} \geq p_{4}$ for $n \geq 1$
(2) $p_{2 n+4} \leq p_{2 n+1}$ for all $n \geq 0$.

Graph

Graph of the critical probabilities

Theorem (J.I.)

(1) $p_{n} \geq p_{4}$ for $n \geq 1$
(2) $p_{2 n+4} \leq p_{2 n+1}$ for all $n \geq 0$.
(3) $p_{2 n+6} \leq p_{2 n+1}$ for all $n \geq 3$.

Graph

Graph of the critical probabilities

Theorem (J.I.)

(1) $p_{n} \geq p_{4}$ for $n \geq 1$
(2) $p_{2 n+4} \leq p_{2 n+1}$ for all $n \geq 0$.
(3) $p_{2 n+6} \leq p_{2 n+1}$ for all $n \geq 3$.

References

- Allaart, P. C. (2010).

How to stop near the top in a random walk?.
Decision Making Processes under Uncertainty and Ambiguity, RIMS Kokyuroku 1682, 33-40.
R- Hlynka, M. and Sheahan, J. N. (1988).
The secretary problem for a random walk.
Stoch. Proc. Appl. 28, 317-325.
囲 Yam, S. C. P., Yung, S. P. and Zhou, W. (2009).
Two rationales behind 'buy-and-hold or sell-at-once'.
J. Appl. Probab. 46, 651-668.

