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History

Maximum of a sequence

(i) Let X1, X2, ..., Xn be iid random variables.

(ii) Mn := max(X1, X2, ..., Xn).

Problem

Suppose we wish to maximize the probability of choosing the
maximum value of the sequence, that is, P (Xτ =Mn). What is
the optimal τ?

We call this problem: Game Max.
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History

Optimal stopping rule

Gilbert and Mosteller (1966) examined this problem when the
distribution is continuous.

1 Let F be the distribution function of Xi.

2 An observation Xi is called a candidate if, Xi =Mi.

3 For each i, there exists a decision number di, such that if
Xi is a candidate and F (xi) ≥ di then it’s optimal to stop at
time i.
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Game Max

Notation

Suppose there are n observations and X is a random variable

Let Vn,max(X, τ) be the probability of win playing the game
Max for X using the stopping rule τ .

Let τ∗ be the optimal stopping rule.

Let V ∗
n,max(X) := sup

τ
Vn,max(X, τ) = Vn,max(X, τ

∗).
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Game Max

For any continuous random variable X

v∗n,max := sup
τ
Vn,max(X, τ)

Table: (Gilbert and Mosteller)

n v∗n,max n v∗n,max
1 1.0000 10 .608699

2 .750000 15 .598980

3 .684293 20 .594200

4 .655396 30 .589472

5 .639194 40 .587126

50 .585725

∞ .580164

The win probability does not depend on the distribution of X as
long as it is continuous.
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Proportion of the Max

Problem

Let X1, X2, ..., Xn be iid nonnegative random variables. Given
n > 0 and 0 < α < 1, find a stopping time τ ≤ n that maximizes

P (Xτ ≥ αMn).

We call this problem: Game Proportion of the Max (αmax).

Motivation

Recall the classical prophet inequality M ≤ 2V , where

M := E[Mn] and V := sup
1≤τ≤n

E[Xτ ].

If a gambler wants to achieve a return at least a half of the
prophet’s return, P (Xτ ≥ 1

2Mn), what is his best strategy?
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Example 1

Discrete Uniform

P (X = x) = 1/N for x = 1, 2, ..., N.

n = 2 and N = 10

τ∗ =

{
1,

⌊
X1
α

⌋
+ dαX1e ≥ 11

2, otherwise.

Jose Islas Half the Max



Example 1

Table: Optimal win probabilities when N = 10

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x∗1(α) 1 2 3 4 5 5 5 5 6

V ∗
2,αmax(X) 1 1 1 0.99 0.98 0.94 0.9 0.86 0.81
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Proportion of the Max

Question

When can we win with probability 1?

Proposition (Allaart, J.I.)

For any n ≥ 1, let X be a random variable with support on [m,M ]
where m > 0 and M <∞. Consider

(1) α2 ≤ m
M

(2) P (mα < X < αM) = 0

Then V ∗
n,αmax(X) = 1 if and only if (1) or (2) holds.
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Example 2

Inverse power

f(x) =

{
a

xa+1 , for x > 1, a > 0

0, otherwise.

n = 2

τ∗ =

{
1, X1 ≥

(
αa + 1

αa

)1/a
2, otherwise.

Probability of win

V ∗
2,αmax(X) = 1− α3a

2(α2a+1)
.

For fixed α as a goes to infinity the probability of win goes to 1.
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Example 2

Figure: Optimal win probabilities for α
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Example 2

Inverse power distribution n = 3, α = 1
2

τ∗ =


1, 7

2 ≤ X1

2, X1 <
7
2 and X2 ≥ min{52 , g(X1)}

3, otherwise.

where g(x) :=
(

1
2− 4

x

)

Probability of win

V ∗
3,hmax(X) ≈ .9846.
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Example 2

Figure: The stopping region for observation 2
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Result

Consider the density

fXk,ε(x) =


1

2εk if (Nα + 1)j − ε ≤ x ≤ (Nα + 1)j + ε

for j = 1, ..., k,

0 otherwise,

k ∈ N.

Lemma (Allaart-J.I.)

For every n ≥ 1, given δ > 0, there exists k > 1 such that

Vn,αmax(X
k,ε, τ) ≤ Vn,max(Xk,ε, τ) + δ

for any stopping rule τ adapted to the filtration {Fi}.
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Result

Theorem (Allaart-J.I.)

For each n ≥ 1, if X is any continuous random variable then
V ∗
n,αmax(X) ≥ v∗n,max and the bound is sharp.

Sketch of proof. It is trivial that

V ∗
n,αmax(X) ≥ v∗n,max

Given δ > 0,

V ∗
n,αmax(X

k,ε) = Vn,αmax(X
k,ε, τ∗)

≤ Vn,max(Xk,ε, τ∗) + δ

≤ V ∗
n,max(X

k,ε) + δ
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Open problem

Problem

Let X1, X2, ..., Xn be independent nonnegative random variables.
Given n > 0, find a stopping time τ ≤ n that maximizes

P (Xτ =Mn).
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