浬SPA 82015

Jose Islas

 (University of North Texas)
Half the Max

Jose Islas

Department of Mathematics
University of North Texas

$$
\text { July 15, } 2015
$$

collaboration with Pieter Allaart

Outline

(1) History: Maximum of a sequence
(2) Proportion of the Max

- Examples
- Results

History

Maximum of a sequence

- (i) Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid random variables.

History

Maximum of a sequence

- (i) Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid random variables.
- (ii) $M_{n}:=\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$.

History

Maximum of a sequence

- (i) Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid random variables.
- (ii) $M_{n}:=\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$.

Problem

Suppose we wish to maximize the probability of choosing the maximum value of the sequence, that is, $P\left(X_{\tau}=M_{n}\right)$. What is the optimal τ ?

History

Maximum of a sequence

- (i) Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid random variables.
- (ii) $M_{n}:=\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$.

Problem

Suppose we wish to maximize the probability of choosing the maximum value of the sequence, that is, $P\left(X_{\tau}=M_{n}\right)$. What is the optimal τ ?

We call this problem: Game Max.

History

Optimal stopping rule
Gilbert and Mosteller (1966) examined this problem when the distribution is continuous.

History

Optimal stopping rule

Gilbert and Mosteller (1966) examined this problem when the distribution is continuous.
(1) Let F be the distribution function of X_{i}.

History

Optimal stopping rule

Gilbert and Mosteller (1966) examined this problem when the distribution is continuous.
(1) Let F be the distribution function of X_{i}.
(2) An observation X_{i} is called a candidate if, $X_{i}=M_{i}$.

History

Optimal stopping rule

Gilbert and Mosteller (1966) examined this problem when the distribution is continuous.
(1) Let F be the distribution function of X_{i}.
(2) An observation X_{i} is called a candidate if, $X_{i}=M_{i}$.
(3) For each i, there exists a decision number d_{i}, such that if X_{i} is a candidate and $F\left(x_{i}\right) \geq d_{i}$ then it's optimal to stop at time i.

Game Max

Notation

Suppose there are n observations and X is a random variable

- Let $V_{n, \max }(X, \tau)$ be the probability of win playing the game Max for X using the stopping rule τ.

Game Max

Notation

Suppose there are n observations and X is a random variable

- Let $V_{n, \max }(X, \tau)$ be the probability of win playing the game Max for X using the stopping rule τ.
- Let τ^{*} be the optimal stopping rule.

Game Max

Notation

Suppose there are n observations and X is a random variable

- Let $V_{n, \max }(X, \tau)$ be the probability of win playing the game Max for X using the stopping rule τ.
- Let τ^{*} be the optimal stopping rule.
- Let $V_{n, \max }^{*}(X):=\sup _{\tau} V_{n, \max }(X, \tau)=V_{n, \max }\left(X, \tau^{*}\right)$.

Game Max

For any continuous random variable X

$$
v_{n, \max }^{*}:=\sup _{\tau} V_{n, \max }(X, \tau)
$$

Table: (Gilbert and Mosteller)

n	$v_{n, \max }^{*}$	n	$v_{n, \max }^{*}$
1	1.0000	10	.608699
2	.750000	15	.598980
3	.684293	20	.594200
4	.655396	30	.589472
5	.639194	40	.587126
		50	.585725
		∞	.580164

Game Max

For any continuous random variable X

$$
v_{n, \max }^{*}:=\sup _{\tau} V_{n, \max }(X, \tau)
$$

Table: (Gilbert and Mosteller)

n	$v_{n, \max }^{*}$	n	$v_{n, \max }^{*}$
1	1.0000	10	.608699
2	.750000	15	.598980
3	.684293	20	.594200
4	.655396	30	.589472
5	.639194	40	.587126
		50	.585725
		∞	.580164

The win probability does not depend on the distribution of X as long as it is continuous.

Proportion of the Max

Problem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid nonnegative random variables. Given
$n>0$ and $0<\alpha<1$, find a stopping time $\tau \leq n$ that maximizes

$$
P\left(X_{\tau} \geq \alpha M_{n}\right)
$$

Proportion of the Max

Problem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid nonnegative random variables. Given
$n>0$ and $0<\alpha<1$, find a stopping time $\tau \leq n$ that maximizes

$$
P\left(X_{\tau} \geq \alpha M_{n}\right)
$$

We call this problem: Game Proportion of the Max ($\alpha \max$).

Proportion of the Max

Problem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid nonnegative random variables. Given
$n>0$ and $0<\alpha<1$, find a stopping time $\tau \leq n$ that maximizes

$$
P\left(X_{\tau} \geq \alpha M_{n}\right)
$$

We call this problem: Game Proportion of the Max ($\alpha \max$).

Motivation

Recall the classical prophet inequality $M \leq 2 V$, where

$$
M:=E\left[M_{n}\right] \text { and } V:=\sup _{1 \leq \tau \leq n} E\left[X_{\tau}\right] .
$$

Proportion of the Max

Problem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid nonnegative random variables. Given $n>0$ and $0<\alpha<1$, find a stopping time $\tau \leq n$ that maximizes

$$
P\left(X_{\tau} \geq \alpha M_{n}\right)
$$

We call this problem: Game Proportion of the Max ($\alpha \max$).

Motivation

Recall the classical prophet inequality $M \leq 2 V$, where

$$
M:=E\left[M_{n}\right] \text { and } V:=\sup _{1 \leq \tau \leq n} E\left[X_{\tau}\right] .
$$

If a gambler wants to achieve a return at least a half of the prophet's return, $P\left(X_{\tau} \geq \frac{1}{2} M_{n}\right)$, what is his best strategy?

Example 1

Discrete Uniform

$$
P(X=x)=1 / N \text { for } x=1,2, \ldots, N
$$

$$
n=2 \text { and } N=10
$$

$$
\tau^{*}= \begin{cases}1, & \left\lfloor\frac{X_{1}}{\alpha}\right\rfloor+\left\lceil\alpha X_{1}\right\rceil \geq 11 \\ 2, & \text { otherwise }\end{cases}
$$

Example 1

Table: Optimal win probabilities when $N=10$

α	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
$x_{1}^{*}(\alpha)$	1	2	3	4	5	5	5	5	6
$V_{2, \alpha \max }^{*}(X)$	1	1	1	0.99	0.98	0.94	0.9	0.86	0.81

Proportion of the Max

Question
When can we win with probability 1 ?

Proportion of the Max

Question

When can we win with probability 1 ?

Proposition (Allaart, J.I.)

For any $n \geq 1$, let X be a random variable with support on $[m, M]$ where $m>0$ and $M<\infty$. Consider
(1) $\alpha^{2} \leq \frac{m}{M}$
(2) $P\left(\frac{m}{\alpha}<X<\alpha M\right)=0$

Then $V_{n, \alpha \max }^{*}(X)=1$ if and only if (1) or (2) holds.

Example 2

Inverse power

$$
f(x)= \begin{cases}\frac{a}{x^{a+1}}, & \text { for } x>1, a>0 \\ 0, & \text { otherwise }\end{cases}
$$

$n=2$

$$
\tau^{*}= \begin{cases}1, & X_{1} \geq\left(\alpha^{a}+\frac{1}{\alpha^{a}}\right)^{1 / a} \\ 2, & \text { otherwise }\end{cases}
$$

Example 2

Inverse power

$$
f(x)= \begin{cases}\frac{a}{x^{a+1}}, & \text { for } x>1, a>0 \\ 0, & \text { otherwise }\end{cases}
$$

$n=2$

$$
\tau^{*}= \begin{cases}1, & X_{1} \geq\left(\alpha^{a}+\frac{1}{\alpha^{a}}\right)^{1 / a} \\ 2, & \text { otherwise } .\end{cases}
$$

Probability of win

$$
V_{2, \alpha \max }^{*}(X)=1-\frac{\alpha^{3 a}}{2\left(\alpha^{2 a}+1\right)} .
$$

For fixed α as a goes to infinity the probability of win goes to 1 .

Example 2

Figure: Optimal win probabilities for α

Example 2

Inverse power distribution $n=3, \alpha=\frac{1}{2}$

$$
\tau^{*}= \begin{cases}1, & \frac{7}{2} \leq X_{1} \\ 2, & X_{1}<\frac{7}{2} \text { and } X_{2} \geq \min \left\{\frac{5}{2}, g\left(X_{1}\right)\right\} \\ 3, & \text { otherwise }\end{cases}
$$

where $g(x):=\left(\frac{1}{2-\frac{4}{x}}\right)$

Example 2

Inverse power distribution $n=3, \alpha=\frac{1}{2}$

$$
\tau^{*}= \begin{cases}1, & \frac{7}{2} \leq X_{1} \\ 2, & X_{1}<\frac{7}{2} \text { and } X_{2} \geq \min \left\{\frac{5}{2}, g\left(X_{1}\right)\right\} \\ 3, & \text { otherwise }\end{cases}
$$

where $g(x):=\left(\frac{1}{2-\frac{4}{x}}\right)$

Probability of win
 $V_{3, h \max }^{*}(X) \approx .9846$.

Example 2

Figure: The stopping region for observation 2

Result

Consider the density

$$
f_{X^{k, \epsilon}}(x)=\left\{\begin{array}{lc}
\frac{1}{2 \epsilon k} & \text { if }\left(N_{\alpha}+1\right)^{j}-\epsilon \leq x \leq\left(N_{\alpha}+1\right)^{j}+\epsilon \\
\quad \text { for } j=1, \ldots, k, \\
0 & \text { otherwise },
\end{array}\right.
$$

$k \in \mathbb{N}$.

Result

Consider the density

$$
f_{X^{k}, \epsilon}(x)=\left\{\begin{array}{lc}
\frac{1}{2 \epsilon k} & \text { if }\left(N_{\alpha}+1\right)^{j}-\epsilon \leq x \leq\left(N_{\alpha}+1\right)^{j}+\epsilon \\
\quad \text { for } j=1, \ldots, k \\
0 & \text { otherwise },
\end{array}\right.
$$

$k \in \mathbb{N}$.

Lemma (Allaart-J.I.)

For every $n \geq 1$, given $\delta>0$, there exists $k>1$ such that

$$
V_{n, \alpha \max }\left(X^{k, \epsilon}, \tau\right) \leq V_{n, \max }\left(X^{k, \epsilon}, \tau\right)+\delta
$$

for any stopping rule τ adapted to the filtration $\left\{\mathcal{F}_{i}\right\}$.

Result

Theorem (Allaart-J.I.)

For each $n \geq 1$, if X is any continuous random variable then $V_{n, \alpha \max }^{*}(X) \geq v_{n, \max }^{*}$ and the bound is sharp.

Result

Theorem (Allaart-J.I.)

For each $n \geq 1$, if X is any continuous random variable then $V_{n, \alpha \max }^{*}(X) \geq v_{n, \max }^{*}$ and the bound is sharp.

Sketch of proof. It is trivial that

$$
V_{n, \alpha \max }^{*}(X) \geq v_{n, \max }^{*}
$$

Result

Theorem (Allaart-J.I.)

For each $n \geq 1$, if X is any continuous random variable then $V_{n, \alpha \max }^{*}(X) \geq v_{n, \max }^{*}$ and the bound is sharp.

Sketch of proof. It is trivial that

$$
V_{n, \alpha \max }^{*}(X) \geq v_{n, \max }^{*}
$$

Given $\delta>0$,

$$
\begin{aligned}
V_{n, \alpha \max }^{*}\left(X^{k, \epsilon}\right) & =V_{n, \alpha \max }\left(X^{k, \epsilon}, \tau^{*}\right) \\
& \leq V_{n, \max }\left(X^{k, \epsilon}, \tau^{*}\right)+\delta \\
& \leq V_{n, \max }^{*}\left(X^{k, \epsilon}\right)+\delta
\end{aligned}
$$

Open problem

Problem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent nonnegative random variables.
Given $n>0$, find a stopping time $\tau \leq n$ that maximizes

$$
P\left(X_{\tau}=M_{n}\right)
$$

References

國 J. Gilbert and F. Mosteller (1966).
Recognizing the maximum of a sequence.
J. Amer. Statist. Assoc. 61, 35-73.

䡒 T. P. Hill and R. P. Kertz (1992).
A survey of prophet inequalities in optimal stopping theory. Strategies for Sequential Search and Selection in Real Time, Contemporary Mathematics 125, 191-207.

