

Jose Islas (University of North Texas)

38th Conference on Stochastic Processes and their Applications Spa2015@oxford-man.ox.ac.uk

Half the Max

Jose Islas

Department of Mathematics University of North Texas

July 15, 2015

æ

collaboration with Pieter Allaart

문 🛌 문

- History: Maximum of a sequence
- Proportion of the Max
- Second Examples
- 4 Results

• (i) Let $X_1, X_2, ..., X_n$ be iid random variables.

< 4 ₽ > < E

æ

- (i) Let $X_1, X_2, ..., X_n$ be iid random variables.
- (ii) $M_n := \max(X_1, X_2, ..., X_n).$

э

∋⊳

< 4 ₽ > < 3

- (i) Let $X_1, X_2, ..., X_n$ be iid random variables.
- (ii) $M_n := \max(X_1, X_2, ..., X_n).$

Problem

Suppose we wish to maximize the probability of choosing the maximum value of the sequence, that is, $P(X_{\tau} = M_n)$. What is the optimal τ ?

- (i) Let $X_1, X_2, ..., X_n$ be iid random variables.
- (ii) $M_n := \max(X_1, X_2, ..., X_n).$

Problem

Suppose we wish to maximize the probability of choosing the maximum value of the sequence, that is, $P(X_{\tau} = M_n)$. What is the optimal τ ?

We call this problem: Game Max.

Gilbert and Mosteller $\left(1966\right)$ examined this problem when the distribution is continuous.

Gilbert and Mosteller $\left(1966\right)$ examined this problem when the distribution is continuous.

1 Let F be the distribution function of X_i .

Gilbert and Mosteller $\left(1966\right)$ examined this problem when the distribution is continuous.

- **1** Let F be the distribution function of X_i .
- 2 An observation X_i is called a candidate if, $X_i = M_i$.

Gilbert and Mosteller $\left(1966\right)$ examined this problem when the distribution is continuous.

- Let F be the distribution function of X_i .
- 2 An observation X_i is called a candidate if, $X_i = M_i$.
- For each *i*, there exists a decision number d_i , such that if X_i is a candidate and $F(x_i) \ge d_i$ then it's optimal to stop at time *i*.

Notation

Suppose there are \boldsymbol{n} observations and \boldsymbol{X} is a random variable

• Let $V_{n,max}(X,\tau)$ be the probability of win playing the game Max for X using the stopping rule τ .

Notation

Suppose there are n observations and X is a random variable

- Let $V_{n,max}(X,\tau)$ be the probability of win playing the game Max for X using the stopping rule τ .
- Let τ^* be the optimal stopping rule.

Notation

Suppose there are n observations and X is a random variable

- Let $V_{n,max}(X,\tau)$ be the probability of win playing the game Max for X using the stopping rule τ .
- Let τ^* be the optimal stopping rule.

• Let
$$V_{n,max}^*(X) := \sup_{\tau} V_{n,max}(X,\tau) = V_{n,max}(X,\tau^*).$$

For any continuous random variable \boldsymbol{X}

$$v_{n,max}^* := \sup_{\tau} V_{n,max}(X,\tau)$$

Table: (Gilbert and Mosteller)

n	$v_{n,max}^*$	n	$v_{n,max}^*$
1	1.0000	10	.608699
2	.750000	15	.598980
3	.684293	20	.594200
4	.655396	30	.589472
5	.639194	40	.587126
		50	.585725
		∞	.580164

For any continuous random variable \boldsymbol{X}

$$v_{n,max}^* := \sup_{\tau} V_{n,max}(X,\tau)$$

Table: (Gilbert and Mosteller)

n	$v_{n,max}^*$	n	$v_{n,max}^*$
1	1.0000	10	.608699
2	.750000	15	.598980
3	.684293	20	.594200
4	.655396	30	.589472
5	.639194	40	.587126
		50	.585725
		∞	.580164

The win probability does not depend on the distribution of X as long as it is continuous.

Let $X_1, X_2, ..., X_n$ be iid nonnegative random variables. Given n>0 and $0<\alpha<1$, find a stopping time $\tau\leq n$ that maximizes

 $P(X_{\tau} \ge \alpha M_n).$

Let $X_1, X_2, ..., X_n$ be iid nonnegative random variables. Given n > 0 and $0 < \alpha < 1$, find a stopping time $\tau \le n$ that maximizes

 $P(X_{\tau} \ge \alpha M_n).$

We call this problem: Game Proportion of the Max (αmax).

Let $X_1, X_2, ..., X_n$ be iid nonnegative random variables. Given n > 0 and $0 < \alpha < 1$, find a stopping time $\tau \le n$ that maximizes

 $P(X_{\tau} \ge \alpha M_n).$

We call this problem: Game Proportion of the Max (αmax).

Motivation

Recall the classical prophet inequality $M \leq 2V$, where

$$M := E[M_n] \text{ and } V := \sup_{1 \le \tau \le n} E[X_\tau].$$

Let $X_1, X_2, ..., X_n$ be iid nonnegative random variables. Given n > 0 and $0 < \alpha < 1$, find a stopping time $\tau \le n$ that maximizes

 $P(X_{\tau} \ge \alpha M_n).$

We call this problem: Game Proportion of the Max (αmax).

Motivation

Recall the classical prophet inequality $M \leq 2V$, where

$$M := E[M_n] \text{ and } V := \sup_{1 \le \tau \le n} E[X_\tau].$$

If a gambler wants to achieve a return at least a half of the prophet's return, $P(X_{\tau} \geq \frac{1}{2}M_n)$, what is his best strategy?

Discrete Uniform

$$P(X = x) = 1/N$$
 for $x = 1, 2, ..., N$.

n = 2 and N = 10

$$\tau^* = \begin{cases} 1, & \left\lfloor \frac{X_1}{\alpha} \right\rfloor + \left\lceil \alpha X_1 \right\rceil \ge 11 \\ 2, & otherwise. \end{cases}$$

æ

∃ >

- < @ ► < @ ►

Table: Optimal win probabilities when N = 10

α	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
$x_1^*(\alpha)$	1	2	3	4	5	5	5	5	6
$V_{2,\alpha max}^*(X)$	1	1	1	0.99	0.98	0.94	0.9	0.86	0.81

< □ > <

æ

Question

When can we win with probability 1?

æ

____ ▶

Question

When can we win with probability 1?

Proposition (Allaart, J.I.)

For any $n \ge 1$, let X be a random variable with support on [m, M]where m > 0 and $M < \infty$. Consider (1) $\alpha^2 \le \frac{m}{M}$ (2) $P(\frac{m}{\alpha} < X < \alpha M) = 0$ Then $V_{n,\alpha max}^*(X) = 1$ if and only if (1) or (2) holds.

Inverse power

$$f(x) = \begin{cases} \frac{a}{x^{a+1}}, & \text{for } x > 1, a > 0\\ 0, & \text{otherwise.} \end{cases}$$

n = 2

$$\tau^* = \begin{cases} 1, & X_1 \ge \left(\alpha^a + \frac{1}{\alpha^a}\right)^{1/a} \\ 2, & otherwise. \end{cases}$$

æ

∃ >

- < @ ► < @ ►

Inverse power

$$f(x) = \begin{cases} \frac{a}{x^{a+1}}, & \text{for } x > 1, a > 0\\ 0, & \text{otherwise.} \end{cases}$$

n=2

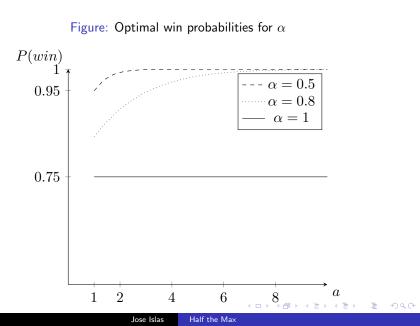
$$\tau^* = \begin{cases} 1, & X_1 \ge \left(\alpha^a + \frac{1}{\alpha^a}\right)^{1/a} \\ 2, & otherwise. \end{cases}$$

Probability of win

$$V_{2,\alpha max}^*(X) = 1 - \frac{\alpha^{3a}}{2(\alpha^{2a}+1)}.$$

For fixed α as a goes to infinity the probability of win goes to 1.

- **→** → **→**



Inverse power distribution n = 3, $\alpha = \frac{1}{2}$

$$\tau^* = \begin{cases} 1, & \frac{7}{2} \le X_1 \\ 2, & X_1 < \frac{7}{2} \text{ and } X_2 \ge \min\{\frac{5}{2}, g(X_1)\} \\ 3, & otherwise. \end{cases}$$

where $g(x):=\left(\frac{1}{2-\frac{4}{x}}\right)$

▲ 同 ▶ → 三 ▶

Inverse power distribution n = 3, $\alpha = \frac{1}{2}$

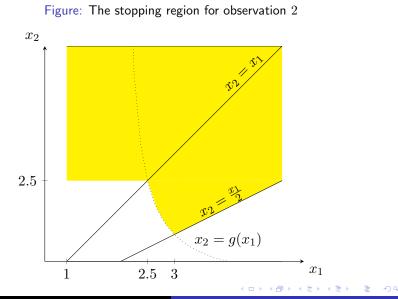
$$\tau^* = \begin{cases} 1, & \frac{7}{2} \le X_1 \\ 2, & X_1 < \frac{7}{2} \text{ and } X_2 \ge \min\{\frac{5}{2}, g(X_1)\} \\ 3, & otherwise. \end{cases}$$

where
$$g(x) := \left(\frac{1}{2-\frac{4}{x}}\right)$$

Probability of win

$$V_{3,hmax}^*(X) \approx .9846.$$

A⊒ ▶ < 3



Jose Islas Half the Max

Result

Consider the density

$$f_{X^{k,\epsilon}}(x) = \begin{cases} \frac{1}{2\epsilon k} & \text{if } (N_{\alpha} + 1)^j - \epsilon \leq x \leq (N_{\alpha} + 1)^j + \epsilon \\ & \text{for } j = 1, ..., k, \\ 0 & \text{otherwise,} \end{cases}$$

 $k \in \mathbb{N}$.

æ

Э

P

Result

Consider the density

$$f_{X^{k,\epsilon}}(x) = \begin{cases} \frac{1}{2\epsilon k} & \text{if } (N_{\alpha} + 1)^j - \epsilon \leq x \leq (N_{\alpha} + 1)^j + \epsilon \\ & \text{for } j = 1, ..., k, \\ 0 & \text{otherwise}, \end{cases}$$

 $k \in \mathbb{N}.$

Lemma (Allaart-J.I.)

For every $n \ge 1$, given $\delta > 0$, there exists k > 1 such that

$$V_{n,\alpha max}(X^{k,\epsilon},\tau) \le V_{n,max}(X^{k,\epsilon},\tau) + \delta$$

for any stopping rule τ adapted to the filtration $\{\mathcal{F}_i\}$.

Theorem (Allaart-J.I.)

For each $n \ge 1$, if X is any continuous random variable then $V_{n,\alpha max}^*(X) \ge v_{n,max}^*$ and the bound is sharp.

▲ 同 ▶ → 三 ▶

Theorem (Allaart-J.I.)

For each $n \ge 1$, if X is any continuous random variable then $V_{n,\alpha max}^*(X) \ge v_{n,max}^*$ and the bound is sharp.

Sketch of proof. It is trivial that

 $V_{n,\alpha max}^*(X) \ge v_{n,max}^*$

Theorem (Allaart-J.I.)

For each $n \ge 1$, if X is any continuous random variable then $V_{n,\alpha max}^*(X) \ge v_{n,max}^*$ and the bound is sharp.

Sketch of proof. It is trivial that

 $V_{n,\alpha max}^*(X) \ge v_{n,max}^*$

Given $\delta > 0$,

$$V_{n,\alpha max}^*(X^{k,\epsilon}) = V_{n,\alpha max}(X^{k,\epsilon},\tau^*)$$

$$\leq V_{n,max}(X^{k,\epsilon},\tau^*) + \delta$$

$$\leq V_{n,max}^*(X^{k,\epsilon}) + \delta$$

Let $X_1, X_2, ..., X_n$ be independent nonnegative random variables. Given n > 0, find a stopping time $\tau \le n$ that maximizes

$$P(X_{\tau} = M_n).$$

- J. GILBERT and F. MOSTELLER (1966). Recognizing the maximum of a sequence. J. Amer. Statist. Assoc. **61**, 35–73.
- T. P. HILL and R. P. KERTZ (1992).
 A survey of prophet inequalities in optimal stopping theory. Strategies for Sequential Search and Selection in Real Time, Contemporary Mathematics 125, 191–207.