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Abstract

This poster discusses the problem of
maximizing the probability of stopping with
one of the two highest values in a Bernoulli
random walk with arbitrary parameter p and
finite time horizon n. The optimal strategy
(continue or stop) depends on a sequence of
threshold values which has an intriguing
oscillating pattern. Several properties of this
sequence were proven and others conjectured
in a 2010 paper by P. Allaart. This poster will
discuss recent progress toward proving the
conjectures.

Introduction
Definition. A stopping time with respect to a
sequence of random variables X, X,, ... is a
random variable twith valuesin{1,2,...} and the
property that for each tin {1,2,..}, the
occurrence or non-occurrence of the event
{t = t} depends only on the values of X, X,, ... X,

Stopping near the top of a random
walk

(i) Let X, X,, ... X,, be independent Bernoulli
random variables with parameter p

(ii) Consider S,:=0, S, := X,+X, +...+ X, for
n<N and

(iii) My:= max(5,S,,..-Sp)

Problem

Given N>0, find a stopping time t< N so as to
maximize P(M,-St < 1).

Win if we stop at one of the two highest
values.

Exploration

Say we are in state (n,i) if:

There are n steps remaining until the
time horizon N;

The walk is currently i units below its
running maximum.

Obviously, it is optimal to continue in
states (n,2), (n,3),...

Lemma (Allaart)

In state (n,0) with n>1, it is also
optimal to continue.

The critical states are (n,1), for
n=12,...

Lemma (Allaart)

For each n21, there exists O<p, < 1
such that, in state (n,1), it is optimal
to

stopifp<p,;

continue if p2p.,.

Remark
The p, can be calculated by backward
induction.

Properties of the sequence

Theorem (Allaart)

(i) p,<0.5 foralln >4

(ii) limsup p,=0.5

(iii) p,,<P>p. <P, fOrall n 2 4,

Conjectures (Allaart)
(i) imp,=0.5
(ii) p,,<p,,., forn2>2

Results
Theorem (J.A.l.)
(i)p,2p,foralln=1
(i1) P21a S P2neg forn20
(iii) p5,6< Pop.g forn23

Graph of the critical probabilities
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